循环神经网络的从零开始实现(RNN)
博客地址:https://www.cnblogs.com/zylyehuo/参考 《动手学深度学习》第二版
代码总览
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)# 独热编码F.one_hot(torch.tensor(), len(vocab))
# 小批量数据形状是二维张量: (批量大小,时间步数)X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
# 初始化模型参数def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
# 隐藏层参数
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))# 这行若没有,就是一个单隐藏层的 MLP
b_h = torch.zeros(num_hiddens, device=device)
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params =
for param in params:
param.requires_grad_(True)
return params# 一个 init_rnn_state 函数在初始化时返回隐状态def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )# 下面的rnn函数定义了如何在一个时间步内计算隐状态和输出def rnn(inputs, state, params):
# inputs的形状:(时间步数量,批量大小,词表大小)
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
# X的形状:(批量大小,词表大小)
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)# 创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数class RNNModelScratch:
"""从零开始实现的循环神经网络模型"""
def __init__(self, vocab_size, num_hiddens, device,
get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)# 检查输出是否具有正确的形状num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
init_rnn_state, rnn)
state = net.begin_state(X.shape, d2l.try_gpu())Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state.shape
# 首先定义预测函数来生成prefix之后的新字符def predict_ch8(prefix, num_preds, net, vocab, device):
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1, device=device)
outputs = ]]
get_input = lambda: torch.tensor(], device=device).reshape((1, 1))
for y in prefix:# 预热期
_, state = net(get_input(), state)
outputs.append(vocab)
for _ in range(num_preds):# 预测num_preds步
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join( for i in outputs])predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
# 梯度裁剪
def grad_clipping(net, theta):
"""裁剪梯度"""
if isinstance(net, nn.Module):
params =
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm# 定义一个函数在一个迭代周期内训练模型def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""训练网络一个迭代周期(定义见第8章)"""
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)# 训练损失之和,词元数量
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用随机抽样时初始化state
state = net.begin_state(batch_size=X.shape, device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state对于nn.GRU是个张量
state.detach_()
else:
# state对于nn.LSTM或对于我们从零开始实现的模型是个张量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因为已经调用了mean函数
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric / metric), metric / timer.stop()# 循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""训练模型(定义见第8章)"""
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=)
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
# 训练和预测
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
print(predict('time traveller'))
animator.add(epoch + 1, )
print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
print(predict('time traveller'))
print(predict('traveller'))# 现在,我们训练循环神经网络模型num_epochs, lr = 500, 1train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
# 最后,让我们检查一下使用随机抽样方法的结果net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
代码解释
1. 初始设置与数据准备
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
[*]功能:
[*]%matplotlib inline: 在Jupyter Notebook中内嵌显示matplotlib图形
[*]import math: 导入数学计算模块
[*]import torch: 导入PyTorch深度学习框架
[*]from torch import nn: 导入PyTorch的神经网络模块
[*]from torch.nn import functional as F: 导入PyTorch的函数模块
[*]from d2l import torch as d2l: 导入《动手学深度学习》的配套工具库
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
[*]功能:
[*]设置批量大小为32,时间步数为35
[*]加载时间机器数据集:
[*]d2l.load_data_time_machine() 函数加载并预处理数据
[*]返回数据迭代器(train_iter)和词汇表(vocab)
[*]词汇表大小:28个字符(小写字母+空格+标点)
2. 数据预处理与表示
# 独热编码
F.one_hot(torch.tensor(), len(vocab))
[*]功能:
[*]演示如何将整数索引转换为独热编码
[*]输入:(两个字符的索引)
[*]输出:形状为(2, 28)的张量,每行对应一个字符的独热编码
[*]例如:索引0 → ,索引2 →
# 小批量数据形状是二维张量: (批量大小,时间步数)X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
[*]功能:
[*]创建示例数据:2个样本,每个样本5个时间步
[*]转置数据:从(2,5)变为(5,2)
[*]应用独热编码:得到形状(5, 2, 28)
[*]这表示:5个时间步,2个样本,每个时间步是28维的独热向量
3. 模型参数初始化
# 初始化模型参数def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
# 隐藏层参数
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))# 这行若没有,就是一个单隐藏层的 MLP
b_h = torch.zeros(num_hiddens, device=device)
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params =
for param in params:
param.requires_grad_(True)
return params
[*]功能:
[*]初始化RNN的五个关键参数:
[*]W_xh: 输入到隐藏层的权重 (28×512)
[*]W_hh: 隐藏层到隐藏层的权重 (512×512) - RNN的关键!
[*]b_h: 隐藏层偏置 (512,)
[*]W_hq: 隐藏层到输出层的权重 (512×28)
[*]b_q: 输出层偏置 (28,)
[*]使用小随机数初始化权重(标准差0.01)
[*]偏置初始化为0
[*]所有参数设置为需要梯度计算
4. 隐藏状态初始化
# 一个 init_rnn_state 函数在初始化时返回隐状态def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
[*]功能:
[*]创建初始隐藏状态(H0)
[*]形状:(batch_size, num_hiddens) = (32, 512)
[*]全部初始化为0
[*]返回元组格式(为了与LSTM等更复杂模型兼容)
5. RNN前向传播
# 下面的rnn函数定义了如何在一个时间步内计算隐状态和输出def rnn(inputs, state, params):
# inputs的形状:(时间步数量,批量大小,词表大小)
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
# X的形状:(批量大小,词表大小)
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
[*]功能:
[*]RNN核心计算逻辑
[*]遍历每个时间步:
[*]计算新隐藏状态:H = tanh(X·W_xh + H·W_hh + b_h)
[*]计算当前输出:Y = H·W_hq + b_q
[*]拼接所有时间步的输出
[*]返回输出序列和最终隐藏状态
6. RNN模型封装
# 创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数class RNNModelScratch:
"""从零开始实现的循环神经网络模型"""
def __init__(self, vocab_size, num_hiddens, device,
get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
[*]功能:
[*]封装RNN模型为可调用类
[*]__init__: 初始化参数和前向函数
[*]__call__:
[*]将输入转换为独热编码
[*]调用前向传播函数
[*]begin_state: 创建初始隐藏状态
7. 模型验证与文本生成
# 检查输出是否具有正确的形状num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
init_rnn_state, rnn)
state = net.begin_state(X.shape, d2l.try_gpu())
[*]功能:
[*]实例化RNN模型
[*]创建初始隐藏状态
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state.shape
[*]功能:
[*]执行前向传播
[*]验证输出形状:(时间步×批量大小, 词汇表大小) = (10, 28)
[*]验证隐藏状态形状:(批量大小, 隐藏单元数) = (2, 512)
# 首先定义预测函数来生成prefix之后的新字符
def predict_ch8(prefix, num_preds, net, vocab, device):
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1, device=device)
outputs = ]]
get_input = lambda: torch.tensor(], device=device).reshape((1, 1))
for y in prefix:# 预热期
_, state = net(get_input(), state)
outputs.append(vocab)
for _ in range(num_preds):# 预测num_preds步
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1))
return ''.join( for i in outputs])
[*]功能:
[*]初始化隐藏状态
[*]预热期:用前缀字符初始化状态
[*]预测期:用模型预测下一个字符
[*]将预测结果转换为字符串
8. 训练准备:梯度裁剪
# 梯度裁剪def grad_clipping(net, theta):
"""裁剪梯度"""
if isinstance(net, nn.Module):
params =
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
[*]功能:
[*]防止梯度爆炸
[*]计算所有参数梯度的L2范数
[*]如果范数超过阈值(theta=1),等比例缩小梯度
9. 训练循环实现
# 定义一个函数在一个迭代周期内训练模型def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""训练网络一个迭代周期(定义见第8章)"""
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2)# 训练损失之和,词元数量
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用随机抽样时初始化state
state = net.begin_state(batch_size=X.shape, device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state对于nn.GRU是个张量
state.detach_()
else:
# state对于nn.LSTM或对于我们从零开始实现的模型是个张量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因为已经调用了mean函数
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric / metric), metric / timer.stop()
[*]功能:
[*]管理隐藏状态(初始化或分离)
[*]准备数据(移动到设备)
[*]前向传播
[*]计算损失(交叉熵)
[*]反向传播
[*]梯度裁剪
[*]参数更新
[*]计算困惑度(perplexity)和训练速度
# 循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""训练模型(定义见第8章)"""
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=)
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
# 训练和预测
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
print(predict('time traveller'))
animator.add(epoch + 1, )
print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
print(predict('time traveller'))
print(predict('traveller'))
[*]功能:
[*]设置损失函数和可视化
[*]初始化优化器
[*]每10个epoch生成预测文本
[*]绘制困惑度曲线
[*]输出最终训练结果
10. 模型训练执行
# 训练循环神经网络模型
num_epochs, lr = 500, 1
[*]功能:设置训练轮数(500)和学习率(1)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
[*]功能:执行训练(顺序采样)
# 最后,检查一下使用随机抽样方法的结果
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
[*]功能:重新初始化模型(确保公平比较)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
[*]功能:执行训练(随机采样)
关键执行流程总结
1. 数据流
[*]文本数据 → 字符索引 → 独热编码
[*]输入形状:(批量大小, 时间步数) → (时间步数, 批量大小, 词汇表大小)
2. 模型流
输入X → 独热编码 → RNN单元 → 隐藏状态H → 输出Y
↑ ↓
└─────┘3. 训练流
for epoch in 500:
初始化隐藏状态
for batch in 数据迭代器:
前向传播 → 计算损失 → 反向传播 → 梯度裁剪 → 更新参数
每10个epoch:生成文本并显示困惑度4. 文本生成流
给定前缀 → 预热状态 → 循环生成字符 → 拼接结果
来源:豆瓜网用户自行投稿发布,如果侵权,请联系站长删除
页:
[1]