博客地址:https://www.cnblogs.com/zylyehuo/
参考 《动手学深度学习》第二版
代码总览
- %matplotlib inline
- import math
- import torch
- from torch import nn
- from torch.nn import functional as F
- from d2l import torch as d2l
复制代码- batch_size, num_steps = 32, 35
- train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
复制代码- F.one_hot(torch.tensor([0, 2]), len(vocab))
复制代码- # 小批量数据形状是二维张量: (批量大小,时间步数)
复制代码- X = torch.arange(10).reshape((2, 5))
- F.one_hot(X.T, 28).shape
复制代码- def get_params(vocab_size, num_hiddens, device):
- num_inputs = num_outputs = vocab_size
- def normal(shape):
- return torch.randn(size=shape, device=device) * 0.01
- # 隐藏层参数
- W_xh = normal((num_inputs, num_hiddens))
- W_hh = normal((num_hiddens, num_hiddens)) # 这行若没有,就是一个单隐藏层的 MLP
- b_h = torch.zeros(num_hiddens, device=device)
- # 输出层参数
- W_hq = normal((num_hiddens, num_outputs))
- b_q = torch.zeros(num_outputs, device=device)
- # 附加梯度
- params = [W_xh, W_hh, b_h, W_hq, b_q]
- for param in params:
- param.requires_grad_(True)
- return params
复制代码- # 一个 init_rnn_state 函数在初始化时返回隐状态
复制代码- def init_rnn_state(batch_size, num_hiddens, device):
- return (torch.zeros((batch_size, num_hiddens), device=device), )
复制代码- # 下面的rnn函数定义了如何在一个时间步内计算隐状态和输出
复制代码- def rnn(inputs, state, params):
- # inputs的形状:(时间步数量,批量大小,词表大小)
- W_xh, W_hh, b_h, W_hq, b_q = params
- H, = state
- outputs = []
- # X的形状:(批量大小,词表大小)
- for X in inputs:
- H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
- Y = torch.mm(H, W_hq) + b_q
- outputs.append(Y)
- return torch.cat(outputs, dim=0), (H,)
复制代码- # 创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数
复制代码- class RNNModelScratch:
- """从零开始实现的循环神经网络模型"""
- def __init__(self, vocab_size, num_hiddens, device,
- get_params, init_state, forward_fn):
- self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
- self.params = get_params(vocab_size, num_hiddens, device)
- self.init_state, self.forward_fn = init_state, forward_fn
- def __call__(self, X, state):
- X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
- return self.forward_fn(X, state, self.params)
- def begin_state(self, batch_size, device):
- return self.init_state(batch_size, self.num_hiddens, device)
复制代码- num_hiddens = 512
- net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
- init_rnn_state, rnn)
- state = net.begin_state(X.shape[0], d2l.try_gpu())
复制代码- Y, new_state = net(X.to(d2l.try_gpu()), state)
- Y.shape, len(new_state), new_state[0].shape
复制代码- # 首先定义预测函数来生成prefix之后的新字符
复制代码- def predict_ch8(prefix, num_preds, net, vocab, device):
- """在prefix后面生成新字符"""
- state = net.begin_state(batch_size=1, device=device)
- outputs = [vocab[prefix[0]]]
- get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
- for y in prefix[1:]: # 预热期
- _, state = net(get_input(), state)
- outputs.append(vocab[y])
- for _ in range(num_preds): # 预测num_preds步
- y, state = net(get_input(), state)
- outputs.append(int(y.argmax(dim=1).reshape(1)))
- return ''.join([vocab.idx_to_token[i] for i in outputs])
复制代码- predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
复制代码- def grad_clipping(net, theta):
- """裁剪梯度"""
- if isinstance(net, nn.Module):
- params = [p for p in net.parameters() if p.requires_grad]
- else:
- params = net.params
- norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
- if norm > theta:
- for param in params:
- param.grad[:] *= theta / norm
复制代码- def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
- """训练网络一个迭代周期(定义见第8章)"""
- state, timer = None, d2l.Timer()
- metric = d2l.Accumulator(2) # 训练损失之和,词元数量
- for X, Y in train_iter:
- if state is None or use_random_iter:
- # 在第一次迭代或使用随机抽样时初始化state
- state = net.begin_state(batch_size=X.shape[0], device=device)
- else:
- if isinstance(net, nn.Module) and not isinstance(state, tuple):
- # state对于nn.GRU是个张量
- state.detach_()
- else:
- # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
- for s in state:
- s.detach_()
- y = Y.T.reshape(-1)
- X, y = X.to(device), y.to(device)
- y_hat, state = net(X, state)
- l = loss(y_hat, y.long()).mean()
- if isinstance(updater, torch.optim.Optimizer):
- updater.zero_grad()
- l.backward()
- grad_clipping(net, 1)
- updater.step()
- else:
- l.backward()
- grad_clipping(net, 1)
- # 因为已经调用了mean函数
- updater(batch_size=1)
- metric.add(l * y.numel(), y.numel())
- return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
复制代码- # 循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现
复制代码- def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
- use_random_iter=False):
- """训练模型(定义见第8章)"""
- loss = nn.CrossEntropyLoss()
- animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
- legend=['train'], xlim=[10, num_epochs])
- # 初始化
- if isinstance(net, nn.Module):
- updater = torch.optim.SGD(net.parameters(), lr)
- else:
- updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
- predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
- # 训练和预测
- for epoch in range(num_epochs):
- ppl, speed = train_epoch_ch8(
- net, train_iter, loss, updater, device, use_random_iter)
- if (epoch + 1) % 10 == 0:
- print(predict('time traveller'))
- animator.add(epoch + 1, [ppl])
- print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
- print(predict('time traveller'))
- print(predict('traveller'))
复制代码- train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
复制代码- net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
复制代码- train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
复制代码
代码解释
1. 初始设置与数据准备
- %matplotlib inline
- import math
- import torch
- from torch import nn
- from torch.nn import functional as F
- from d2l import torch as d2l
复制代码
- 功能:
- %matplotlib inline: 在Jupyter Notebook中内嵌显示matplotlib图形
- import math: 导入数学计算模块
- import torch: 导入PyTorch深度学习框架
- from torch import nn: 导入PyTorch的神经网络模块
- from torch.nn import functional as F: 导入PyTorch的函数模块
- from d2l import torch as d2l: 导入《动手学深度学习》的配套工具库
- batch_size, num_steps = 32, 35
- train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
复制代码
- 功能:
- 设置批量大小为32,时间步数为35
- 加载时间机器数据集:
- d2l.load_data_time_machine() 函数加载并预处理数据
- 返回数据迭代器(train_iter)和词汇表(vocab)
- 词汇表大小:28个字符(小写字母+空格+标点)
2. 数据预处理与表示
- # 独热编码
- F.one_hot(torch.tensor([0, 2]), len(vocab))
复制代码
- 功能:
- 演示如何将整数索引转换为独热编码
- 输入:[0, 2](两个字符的索引)
- 输出:形状为(2, 28)的张量,每行对应一个字符的独热编码
- 例如:索引0 → [1,0,0,...],索引2 → [0,0,1,0,...]
- # 小批量数据形状是二维张量: (批量大小,时间步数)X = torch.arange(10).reshape((2, 5))
- F.one_hot(X.T, 28).shape
复制代码
- 功能:
- 创建示例数据:2个样本,每个样本5个时间步
- 转置数据:从(2,5)变为(5,2)
- 应用独热编码:得到形状(5, 2, 28)
- 这表示:5个时间步,2个样本,每个时间步是28维的独热向量
3. 模型参数初始化
- # 初始化模型参数def get_params(vocab_size, num_hiddens, device):
- num_inputs = num_outputs = vocab_size
- def normal(shape):
- return torch.randn(size=shape, device=device) * 0.01
- # 隐藏层参数
- W_xh = normal((num_inputs, num_hiddens))
- W_hh = normal((num_hiddens, num_hiddens)) # 这行若没有,就是一个单隐藏层的 MLP
- b_h = torch.zeros(num_hiddens, device=device)
- # 输出层参数
- W_hq = normal((num_hiddens, num_outputs))
- b_q = torch.zeros(num_outputs, device=device)
- # 附加梯度
- params = [W_xh, W_hh, b_h, W_hq, b_q]
- for param in params:
- param.requires_grad_(True)
- return params
复制代码
- 功能:
- 初始化RNN的五个关键参数:
- W_xh: 输入到隐藏层的权重 (28×512)
- W_hh: 隐藏层到隐藏层的权重 (512×512) - RNN的关键!
- b_h: 隐藏层偏置 (512,)
- W_hq: 隐藏层到输出层的权重 (512×28)
- b_q: 输出层偏置 (28,)
- 使用小随机数初始化权重(标准差0.01)
- 偏置初始化为0
- 所有参数设置为需要梯度计算
4. 隐藏状态初始化
- # 一个 init_rnn_state 函数在初始化时返回隐状态def init_rnn_state(batch_size, num_hiddens, device):
- return (torch.zeros((batch_size, num_hiddens), device=device), )
复制代码
- 功能:
- 创建初始隐藏状态(H0)
- 形状:(batch_size, num_hiddens) = (32, 512)
- 全部初始化为0
- 返回元组格式(为了与LSTM等更复杂模型兼容)
5. RNN前向传播
- # 下面的rnn函数定义了如何在一个时间步内计算隐状态和输出def rnn(inputs, state, params):
- # inputs的形状:(时间步数量,批量大小,词表大小)
- W_xh, W_hh, b_h, W_hq, b_q = params
- H, = state
- outputs = []
- # X的形状:(批量大小,词表大小)
- for X in inputs:
- H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
- Y = torch.mm(H, W_hq) + b_q
- outputs.append(Y)
- return torch.cat(outputs, dim=0), (H,)
复制代码
- 功能:
- RNN核心计算逻辑
- 遍历每个时间步:
- 计算新隐藏状态:H = tanh(X·W_xh + H·W_hh + b_h)
- 计算当前输出:Y = H·W_hq + b_q
- 拼接所有时间步的输出
- 返回输出序列和最终隐藏状态
6. RNN模型封装
- # 创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数class RNNModelScratch:
- """从零开始实现的循环神经网络模型"""
- def __init__(self, vocab_size, num_hiddens, device,
- get_params, init_state, forward_fn):
- self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
- self.params = get_params(vocab_size, num_hiddens, device)
- self.init_state, self.forward_fn = init_state, forward_fn
- def __call__(self, X, state):
- X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
- return self.forward_fn(X, state, self.params)
- def begin_state(self, batch_size, device):
- return self.init_state(batch_size, self.num_hiddens, device)
复制代码
- 功能:
- 封装RNN模型为可调用类
- __init__: 初始化参数和前向函数
- __call__:
- begin_state: 创建初始隐藏状态
7. 模型验证与文本生成
- # 检查输出是否具有正确的形状num_hiddens = 512
- net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
- init_rnn_state, rnn)
- state = net.begin_state(X.shape[0], d2l.try_gpu())
复制代码- Y, new_state = net(X.to(d2l.try_gpu()), state)
- Y.shape, len(new_state), new_state[0].shape
复制代码
- 功能:
- 执行前向传播
- 验证输出形状:(时间步×批量大小, 词汇表大小) = (10, 28)
- 验证隐藏状态形状:(批量大小, 隐藏单元数) = (2, 512)
- # 首先定义预测函数来生成prefix之后的新字符
- def predict_ch8(prefix, num_preds, net, vocab, device):
- """在prefix后面生成新字符"""
- state = net.begin_state(batch_size=1, device=device)
- outputs = [vocab[prefix[0]]]
- get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
- for y in prefix[1:]: # 预热期
- _, state = net(get_input(), state)
- outputs.append(vocab[y])
- for _ in range(num_preds): # 预测num_preds步
- y, state = net(get_input(), state)
- outputs.append(int(y.argmax(dim=1).reshape(1))
- return ''.join([vocab.idx_to_token[i] for i in outputs])
复制代码
- 功能:
- 初始化隐藏状态
- 预热期:用前缀字符初始化状态
- 预测期:用模型预测下一个字符
- 将预测结果转换为字符串
8. 训练准备:梯度裁剪
- # 梯度裁剪def grad_clipping(net, theta):
- """裁剪梯度"""
- if isinstance(net, nn.Module):
- params = [p for p in net.parameters() if p.requires_grad]
- else:
- params = net.params
- norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
- if norm > theta:
- for param in params:
- param.grad[:] *= theta / norm
复制代码
- 功能:
- 防止梯度爆炸
- 计算所有参数梯度的L2范数
- 如果范数超过阈值(theta=1),等比例缩小梯度
9. 训练循环实现
- # 定义一个函数在一个迭代周期内训练模型def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
- """训练网络一个迭代周期(定义见第8章)"""
- state, timer = None, d2l.Timer()
- metric = d2l.Accumulator(2) # 训练损失之和,词元数量
- for X, Y in train_iter:
- if state is None or use_random_iter:
- # 在第一次迭代或使用随机抽样时初始化state
- state = net.begin_state(batch_size=X.shape[0], device=device)
- else:
- if isinstance(net, nn.Module) and not isinstance(state, tuple):
- # state对于nn.GRU是个张量
- state.detach_()
- else:
- # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
- for s in state:
- s.detach_()
- y = Y.T.reshape(-1)
- X, y = X.to(device), y.to(device)
- y_hat, state = net(X, state)
- l = loss(y_hat, y.long()).mean()
- if isinstance(updater, torch.optim.Optimizer):
- updater.zero_grad()
- l.backward()
- grad_clipping(net, 1)
- updater.step()
- else:
- l.backward()
- grad_clipping(net, 1)
- # 因为已经调用了mean函数
- updater(batch_size=1)
- metric.add(l * y.numel(), y.numel())
- return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
复制代码
- 功能:
- 管理隐藏状态(初始化或分离)
- 准备数据(移动到设备)
- 前向传播
- 计算损失(交叉熵)
- 反向传播
- 梯度裁剪
- 参数更新
- 计算困惑度(perplexity)和训练速度
- # 循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
- use_random_iter=False):
- """训练模型(定义见第8章)"""
- loss = nn.CrossEntropyLoss()
- animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
- legend=['train'], xlim=[10, num_epochs])
- # 初始化
- if isinstance(net, nn.Module):
- updater = torch.optim.SGD(net.parameters(), lr)
- else:
- updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
- predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
- # 训练和预测
- for epoch in range(num_epochs):
- ppl, speed = train_epoch_ch8(
- net, train_iter, loss, updater, device, use_random_iter)
- if (epoch + 1) % 10 == 0:
- print(predict('time traveller'))
- animator.add(epoch + 1, [ppl])
- print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
- print(predict('time traveller'))
- print(predict('traveller'))
复制代码
- 功能:
- 设置损失函数和可视化
- 初始化优化器
- 每10个epoch生成预测文本
- 绘制困惑度曲线
- 输出最终训练结果
10. 模型训练执行
- # 训练循环神经网络模型
- num_epochs, lr = 500, 1
复制代码- train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
复制代码- # 最后,检查一下使用随机抽样方法的结果
- net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
复制代码- train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
复制代码 关键执行流程总结
1. 数据流
- 文本数据 → 字符索引 → 独热编码
- 输入形状:(批量大小, 时间步数) → (时间步数, 批量大小, 词汇表大小)
2. 模型流
- 输入X → 独热编码 → RNN单元 → 隐藏状态H → 输出Y
- ↑ ↓
- └───[H]──┘
复制代码 3. 训练流
- for epoch in 500:
- 初始化隐藏状态
- for batch in 数据迭代器:
- 前向传播 → 计算损失 → 反向传播 → 梯度裁剪 → 更新参数
- 每10个epoch:生成文本并显示困惑度
复制代码 4. 文本生成流
- 给定前缀 → 预热状态 → 循环生成字符 → 拼接结果
复制代码 来源:豆瓜网用户自行投稿发布,如果侵权,请联系站长删除 |