- import math
- import pandas as pd
- import torch
- from torch import nn
- from d2l import torch as d2l
复制代码 基于位置的前馈网络
- class PositionWiseFFN(nn.Module):
- """基于位置的前馈网络"""
- def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
- **kwargs):
- super(PositionWiseFFN, self).__init__(**kwargs)
- self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
- self.relu = nn.ReLU()
- self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
- def forward(self, X):
- return self.dense2(self.relu(self.dense1(X)))
复制代码 改变张量的最里层维度的尺寸
- ffn = PositionWiseFFN(4, 4, 8)
- ffn.eval()
- ffn(torch.ones((2, 3, 4)))[0]
复制代码
对比不同维度的层规范化和批量规范化的效果
- ln = nn.LayerNorm(2)
- bn = nn.BatchNorm1d(2)
- X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
- # 在训练模式下计算X的均值和方差
- print('layer norm:', ln(X), '\nbatch norm:', bn(X))
复制代码
使用残差连接和层归一化
- class AddNorm(nn.Module):
- """残差连接后进行层规范化"""
- def __init__(self, normalized_shape, dropout, **kwargs):
- super(AddNorm, self).__init__(**kwargs)
- self.dropout = nn.Dropout(dropout)
- self.ln = nn.LayerNorm(normalized_shape)
- def forward(self, X, Y):
- return self.ln(self.dropout(Y) + X)
复制代码 加法操作后输出张量的形状相同
- add_norm = AddNorm([3, 4], 0.5)
- add_norm.eval()
- add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape
复制代码
实现编码器中的一个层
- class EncoderBlock(nn.Module):
- """Transformer编码器块"""
- def __init__(self, key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- dropout, use_bias=False, **kwargs):
- super(EncoderBlock, self).__init__(**kwargs)
- self.attention = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout,
- use_bias)
- self.addnorm1 = AddNorm(norm_shape, dropout)
- self.ffn = PositionWiseFFN(
- ffn_num_input, ffn_num_hiddens, num_hiddens)
- self.addnorm2 = AddNorm(norm_shape, dropout)
- def forward(self, X, valid_lens):
- Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
- return self.addnorm2(Y, self.ffn(Y))
复制代码 Transformer编码器中的任何层都不会改变其输入的形状
- X = torch.ones((2, 100, 24))
- valid_lens = torch.tensor([3, 2])
- encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5)
- encoder_blk.eval()
- encoder_blk(X, valid_lens).shape
复制代码
Transformer编码器
- class TransformerEncoder(d2l.Encoder):
- """Transformer编码器"""
- def __init__(self, vocab_size, key_size, query_size, value_size,
- num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, num_layers, dropout, use_bias=False, **kwargs):
- super(TransformerEncoder, self).__init__(**kwargs)
- self.num_hiddens = num_hiddens
- self.embedding = nn.Embedding(vocab_size, num_hiddens)
- self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
- self.blks = nn.Sequential()
- for i in range(num_layers):
- self.blks.add_module("block"+str(i),
- EncoderBlock(key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, dropout, use_bias))
- def forward(self, X, valid_lens, *args):
- # 因为位置编码值在-1和1之间,
- # 因此嵌入值乘以嵌入维度的平方根进行缩放,
- # 然后再与位置编码相加。
- X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
- self.attention_weights = [None] * len(self.blks)
- for i, blk in enumerate(self.blks):
- X = blk(X, valid_lens)
- self.attention_weights[
- i] = blk.attention.attention.attention_weights
- return X
复制代码 创建一个两层的Transformer编码器
- encoder = TransformerEncoder(
- 200, 24, 24, 24, 24, [100, 24], 24, 48, 8, 2, 0.5)
- encoder.eval()
- encoder(torch.ones((2, 100), dtype=torch.long), valid_lens).shape
复制代码
Transformer解码器也是由多个相同的层组成
- class DecoderBlock(nn.Module):
- """解码器中第i个块"""
- def __init__(self, key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- dropout, i, **kwargs):
- super(DecoderBlock, self).__init__(**kwargs)
- self.i = i
- self.attention1 = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout)
- self.addnorm1 = AddNorm(norm_shape, dropout)
- self.attention2 = d2l.MultiHeadAttention(
- key_size, query_size, value_size, num_hiddens, num_heads, dropout)
- self.addnorm2 = AddNorm(norm_shape, dropout)
- self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
- num_hiddens)
- self.addnorm3 = AddNorm(norm_shape, dropout)
- def forward(self, X, state):
- enc_outputs, enc_valid_lens = state[0], state[1]
- # 训练阶段,输出序列的所有词元都在同一时间处理,
- # 因此state[2][self.i]初始化为None。
- # 预测阶段,输出序列是通过词元一个接着一个解码的,
- # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
- if state[2][self.i] is None:
- key_values = X
- else:
- key_values = torch.cat((state[2][self.i], X), axis=1)
- state[2][self.i] = key_values
- if self.training:
- batch_size, num_steps, _ = X.shape
- # dec_valid_lens的开头:(batch_size,num_steps),
- # 其中每一行是[1,2,...,num_steps]
- dec_valid_lens = torch.arange(
- 1, num_steps + 1, device=X.device).repeat(batch_size, 1)
- else:
- dec_valid_lens = None
- # 自注意力
- X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
- Y = self.addnorm1(X, X2)
- # 编码器-解码器注意力。
- # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
- Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
- Z = self.addnorm2(Y, Y2)
- return self.addnorm3(Z, self.ffn(Z)), state
复制代码 编码器和解码器的特征维度都是num_hiddens
- decoder_blk = DecoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5, 0)
- decoder_blk.eval()
- X = torch.ones((2, 100, 24))
- state = [encoder_blk(X, valid_lens), valid_lens, [None]]
- decoder_blk(X, state)[0].shape
复制代码
Transformer解码器
- class TransformerDecoder(d2l.AttentionDecoder):
- def __init__(self, vocab_size, key_size, query_size, value_size,
- num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, num_layers, dropout, **kwargs):
- super(TransformerDecoder, self).__init__(**kwargs)
- self.num_hiddens = num_hiddens
- self.num_layers = num_layers
- self.embedding = nn.Embedding(vocab_size, num_hiddens)
- self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
- self.blks = nn.Sequential()
- for i in range(num_layers):
- self.blks.add_module("block"+str(i),
- DecoderBlock(key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens,
- num_heads, dropout, i))
- self.dense = nn.Linear(num_hiddens, vocab_size)
- def init_state(self, enc_outputs, enc_valid_lens, *args):
- return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
- def forward(self, X, state):
- X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
- self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
- for i, blk in enumerate(self.blks):
- X, state = blk(X, state)
- # 解码器自注意力权重
- self._attention_weights[0][
- i] = blk.attention1.attention.attention_weights
- # “编码器-解码器”自注意力权重
- self._attention_weights[1][
- i] = blk.attention2.attention.attention_weights
- return self.dense(X), state
- @property
- def attention_weights(self):
- return self._attention_weights
复制代码 训练
- num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
- lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
- ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
- key_size, query_size, value_size = 32, 32, 32
- norm_shape = [32]
复制代码- train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
复制代码- encoder = TransformerEncoder(
- len(src_vocab), key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- num_layers, dropout)
复制代码- decoder = TransformerDecoder(
- len(tgt_vocab), key_size, query_size, value_size, num_hiddens,
- norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
- num_layers, dropout)
复制代码- net = d2l.EncoderDecoder(encoder, decoder)
复制代码- d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
复制代码- engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
- fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
复制代码- for eng, fra in zip(engs, fras):
- translation, dec_attention_weight_seq = d2l.predict_seq2seq(
- net, eng, src_vocab, tgt_vocab, num_steps, device, True)
- print(f'{eng} => {translation}, ',
- f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
复制代码- enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape((num_layers, num_heads,
- -1, num_steps))
- enc_attention_weights.shape
复制代码- d2l.show_heatmaps(
- enc_attention_weights.cpu(), xlabel='Key positions',
- ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],
- figsize=(7, 3.5))
复制代码
为了可视化解码器的自注意力权重和“编码器-解码器”的注意力权重,我们需要完成更多的数据操作工作
- dec_attention_weights_2d = [head[0].tolist()
- for step in dec_attention_weight_seq
- for attn in step for blk in attn for head in blk]
- dec_attention_weights_filled = torch.tensor(
- pd.DataFrame(dec_attention_weights_2d).fillna(0.0).values)
- dec_attention_weights = dec_attention_weights_filled.reshape((-1, 2, num_layers, num_heads, num_steps))
- dec_self_attention_weights, dec_inter_attention_weights = \
- dec_attention_weights.permute(1, 2, 3, 0, 4)
- dec_self_attention_weights.shape, dec_inter_attention_weights.shape
复制代码- # Plusonetoincludethebeginning-of-sequencetoken
- d2l.show_heatmaps(
- dec_self_attention_weights[:, :, :, :len(translation.split()) + 1],
- xlabel='Key positions', ylabel='Query positions',
- titles=['Head %d' % i for i in range(1, 5)], figsize=(7, 3.5))
复制代码
输出序列的查询不会与输入序列中填充位置的词元进行注意力计算
- d2l.show_heatmaps(
- dec_inter_attention_weights, xlabel='Key positions',
- ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],
- figsize=(7, 3.5))
复制代码
来源:豆瓜网用户自行投稿发布,如果侵权,请联系站长删除 |